
y mod 11 (-y) mod 11 Explanation

1 odd even -1=10 1+(-1) = 1+10 = 11 = 0 mod 11

2 even odd -2=9 2+(-2) = 2+9 = 11 = 0 mod 11

3 odd even -3=8

4 even odd -4=7

5 odd even -5=6

6 even odd -6=5

7 odd even -7=4

8 even odd -8=3

9 odd even -9=2

10 even odd -10=1 10+(-10) = 10+1 = 11 = 0 mod 11

2+3 = 5 mod 11
7+9 = 16 = 5 mod 11

7 === -4 mod 11
9 === -2 mod 11

(-4)+(-2) = -6 mod 11 = 5 mod 11

m1=2

m2=3

m3=1

m4=4
PrKA=x
PuKA=a

UTxO

A
B1

E

PrKE=z
PuKE=e

B2

m1=2

m2=3

m3'=7

m4'=9
PrKA=x
PuKA=a

UTxO

A

B1

E

PrKE=z
PuKE=e

B2

Let p = 11

Let Unspent Transactions Outputs - UTxO are made in bitcoins - BTC and as toy example take p = 11

The balance equation is:
2+ 3 = 5 mod 11 = 1+4 = 5 mod 11

The balance equation is:
2+ 3 = 5 mod 11 = 7+9 = 16 mod 11 = 5

4.3 Range proofs.
How to prove that Alice spends the same sum Ex = m3 + m4 = 5 = m1 + m2 = In.

We will deal with Elliptic Curves (EC), Elliptic Curve Groups (ECG) and Elliptic Curve Cryptosystem (ECCS)

Elliptic Curve Group (ECG)

Number of points N of Elliptic Curve with coordinates (x, y) is an order of ECG.

Addition operation ⊞ of points in ECG: let points P(xP,yP) and Q(xQ,yQ) are in EC with coordinates (xP,yP) and
(xQ,yQ) then P ⊞ Q = T with coordinates (xT,yT) in EC.

Neutral element is group zero O at the infinity (∞) of [XOY] plane.

Multiplication of any EC point G by scalar x: A=xG; A=G ⊞ G ⊞ G ⊞…⊞ G; x–times.

Generator–Base Point G: ECG={ iG; i=1,2,…,N}; NG=0 and qG≠0 if q<N.

Elliptic Curve Cryptosystem (ECCS)

PP=(EC secp256k1; BasePoint-Generator G; prime p; param. a, b);

114_007 RangeProof

 114_007 RangeProof Page 1

PP=(EC secp256k1; BasePoint-Generator G; prime p; param. a, b);

Parameters a, b defines EC equation y2=x3+ax+b mod p over Fp.

PrK ECC=x;
>> x=randi(p-1).

PuKECC = A = G ⊞ G ⊞ G ⊞…⊞ G; x–times.

Alice A: x=…..; A=(xA, yA);

Let r <-- randi(p) be a secret number.

Let H = rG be the other Generator in EC.
Both G and H are Public Parameters PP = (G, H) together with all others for Range Proofs.

We will use the following identities valid in EC algebra.
Let u, v are integers < p.

Property 1: (u + v)P = uP ⊞ vP in literature it is replaced to --> (u + v)P = uP + vP

Property 2: u(P ⊞ Q) = uP ⊞ uQ in literature it is replaced to --> u(P + Q) = uP + uQ

Property 3: uT ⊟ uT = u(T ⊟ T) = uO = O;

 uT ⊟ uT = (u-u)T = 0T = O.

For incomes In = 5 = 101b = (b2 b1 b0)b = b2 • 22 + b1 • 21 + b0 • 20 = 1•22 + 0•21 + 1•20 = 5.

Generate random numbers x2, x1, x0 in ZN (the set of positive integers do not exceeding the number N of points
of Elliptic Curve) to be used as blinding factors.
Define also Pedersen Commitments C2, C1, C0 for each b2, b1, b0:

 C2 = x2G ⊞ (b2•22)H.

 C1 = x1G ⊞ (b1•21)H.

 C0 = x0G ⊞ (b0•20)H.

Then x2, x1, x0 will always be a private keys PrK2, PrK1, PrK0 to one part of the following
 public keys PuK2, PuK1, PuK0 respectively consisting of 2 components

 PrK2 = x2; PuK2 = (PuK21, PuK22) = (C2, C2 ⊟ (b2•22)H).

 PrK1 = x1; PuK1 = (PuK11, PuK12) = (C1, C1 ⊟ (b1•21)H).

 PrK0 = x0; PuK0 = (PuK01, PuK02) = (C0, C0 ⊟ (b0•20)H).

O

 114_007 RangeProof Page 2

 PrK0 = x0; PuK0 = (PuK01, PuK02) = (C0, C0 ⊟ (b0•20)H).

Clearly, in general for i = 2, 1, 0, if bi = 0 --> Ci = xiG ⊞ 0H = xiG

 if bi = 1 --> Ci = xiG ⊞ (1•2i)H ⊟ (1•2i)H = xiG.

In our case when (b2 b1 b0)b = (101)b we have:

b2 = 1 --> PrK2 = x2; PuK2 = (PuK22) = (C2 ⊟ (1•22)H) = x2G ⊞ (1•22)H ⊟ (1•22)H = x2G.

b1 = 0 --> PrK1 = x1; PuK1 = (PuK11) = (C1 ⊟ (0•21)H) = x1G ⊞ (0•21)H = x1G.

b0 = 1 --> PrK0 = x0; PuK0 = (PuK02) = (C2 ⊟ (1•20)H) = x0G ⊞ (1•20)H ⊟ (1•20)H = x0G.

In our case for incomes In = 5 we have:

 C = C2 ⊞ C1 ⊞ C0 = x2G ⊞ (b2•22)H ⊞ x1G ⊞ (b1•21)H ⊞ x0G ⊞ (b0•20)H =

 = (x2+ x1+ x0)G ⊞ ((1•22) + (0•21) + (1•20)]H =

 = (x2+ x1+ x0)G ⊞ (1•22 + 0•21 + 1•20)H =

 = (x2+ x1+ x0)G ⊞ 5H.

In other words, a blinding factor xi will always be the private key corresponding to one of
fCi;Ci
Borromean Ring Signature scheme of Section 3.4 with the ring:
ffC0;C0
4.4 Range proofs in a blockchain
In the context of Monero we will use range proofs to commit to individual bit components and

Till this place

 114_007 RangeProof Page 3

In the context of Monero we will use range proofs to commit to individual bit components and
to prove that their sum equals the total amount committed. Therefore, it will not be necessary
for the receiver nor any other party to know the blinding factors xiG. In other words, it is
su cient to know that
Xk
i=0
Ci = C
In the blockchain we will store only the commitments/keys Ci. The mining community will have
to check that the equation above holds and that the private key of either Ci or Ci
been used to sign the amount.
The Borromean signature scheme requires knowledge of xi to produce a signature. In consequence,
upon verifying this relationship between keys, any third party will be able to convince
himself that amounts fall within ranges and that money is not being arti
cially created.

 114_007 RangeProof Page 4

